

Programmers Guide to the Air-

Handling Unit Performance

Assessment Rule DLL

Michael A. Galler

NISTIR 7960

NISTIR 7960

Programmers Guide to the Air-

Handling Unit Performance

Assessment Rule DLL

Michael A. Galler

Mechanical Systems and Control Group

Building Environment Division

Engineering Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899-8631

September 2013

U.S. DEPARTMENT OF COMMERCE

Rebecca Blank, Acting Secretary

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

Patrick Gallagher, Director

1

Abstract

The air handling unit (AHU) Performance Assessment Rules (APAR) dynamically linked library

(DLL) is an implementation of the APAR ruleset, which was developed for automated fault

detection and diagnostics for air handling units [1-7]. While a list of the rules has been widely

available, an implementation of them that is easy to access and use has not been. The APAR

DLL was developed in Microsoft Visual Studio 2008, and was designed to increase ease of

access to the analysis this rule set provides. By implementing the rules in a DLL, the rules are

available for use by existing applications or new applications written specifically to take

advantage of this new functionality. This includes commonly used tools such as MATLAB and

LabView. By combining this with other programs such as the BACnet Communications DLL

[8] or the BACnet Data Source [9], researchers can create powerful tools for Fault Detection and

Diagnostics for use in buildings.

The purpose of this paper is to introduce the APAR DLL to heating, ventilation, and air

conditioning (HVAC) designers, engineers, software developers, researchers, or anyone else

interested in using the capabilities it provides. This paper provides instructions on how to

interface with the DLL from a program written in C++. This information should be sufficient to

allow users to interface from other computer languages or environments.

Disclaimers

Any mention of commercial products in the APAR DLL or this guide is for information purposes

only; it does not imply recommendation or endorsement by the National Institute of Standards

and Technology (NIST).

This software was developed at the National Institute of Standards and Technology by

employees of the Federal Government in the course of their official duties. Pursuant to Title 17

Section 105 of the United States Code this software is not subject to copyright protection and is

in the public domain. This software is an experimental system. NIST assumes no responsibility

whatsoever for its use by other parties, and makes no guarantees, expressed or implied, about its

quality, reliability, or any other characteristic.

This software can be redistributed and/or modified freely provided that any derivative works

bear some notice that they are derived from it, and any modified versions bear some notice that

they have been modified. We would appreciate acknowledgement if the software is used.

2

Table of Contents

1. Introduction to APAR and the APAR DLL .. 3

2. Usage of the APAR DLL ... 4

2.1. Use of the setAHUconfig subroutine .. 5

2.2. Use of the getAHUconfig subroutine .. 6

2.3. Use of the setAHUparameters subroutine .. 7

2.4. Use of the getAHUparameters subroutine .. 9

2.5. Use of the setAHUoccupancy subroutine ... 9

2.6. Use of the getAHUoccupancy subroutine .. 11

2.7. Use of the evalData subroutine .. 12

2.8. Use of the addAHUrecord subroutine ... 14

2.9. Use of the ReadFile subroutine .. 15

2.10. Use of the getCauseDescription subroutine ... 16

2.11. Use of the getRuleDescription subroutine.. 17

3. Using the APAR DLL- Code Samples ... 19

4. Summary .. 21

5. References .. 21

List of Tables

Table 1: Modes of Operation in APAR ...3

Table 2- Subroutines in the APAR DLL..4

Table 3- Value ranges for variable types used in the APAR DLL4

Table 4- The members of the tm structure ...5

Table 5- Explanation of arguments to the setAHUconfig subroutine5

Table 6- Options for setAHUconfig ..6

Table 7- Description of return values for the setAHUconfig subroutine6

Table 8- Explanation of arguments to the getAHUconfig subroutine6

Table 9- Description of return values for the getAHUconfig subroutine7

Table 10- Explanation of arguments to the setAHUparameters subroutine7

Table 11- Values for setAHUparameters ...8

Table 12- Description of return values for the setAHUparameters subroutine9

Table 13- Explanation of arguments to the getAHUparameters subroutine9

Table 14- Description of return values for the getAHUparameters subroutine9

Table 15- Explanation of arguments to the setAHUoccupancy subroutine10

Table 16- Values for the day of week parameter ...11

Table 17- Description of return values for the setAHUparameters subroutine11

Table 18- Explanation of arguments to the getAHUoccupancy subroutine12

Table 19- Explanation of arguments to the evalData subroutine13

Table 20- Order of input variables for the addAHUrecord subroutine15

Table 21- Description of return values for the addAHUrecord subroutine15

Table 22- Explanation of arguments to the ReadFile subroutine16

Table 23- Description of return values for the ReadFile subroutine16

Table 24- Explanation of arguments to the getCauseDescription subroutine....................17

Table 25- Description of return values for the getCauseDescription subroutine17

Table 26- Explanation of arguments to the getRuleDescription subroutine17

Table 27- Description of return values for the getRuleDescription subroutine18

3

1. Introduction to APAR and the APAR DLL

The AHU Performance Assessment Rule (APAR) rule set is used to perform fault detection and

diagnostics (FDD) on air handling units (AHUs). The APAR rule set was developed at NIST,

and uses control signals and occupancy information to identify the particular mode of operation

of the AHU, thereby identifying a subset of the rules that specify temperature relationships that

are applicable for that mode [1]. The modes are described in Table 1. Subsets of the 28 APAR

rules are applicable to each mode, as well as a subset of the rules which are applied in every

mode. The APAR rule set has been used to evaluate building data from simulations and from

field studies [1-7].

Table 1: Modes of Operation in APAR

Mode Description

1 Heating

2 Cooling with outdoor air

3 Mechanical cooling with 100 % outdoor air

4 Mechanical cooling with minimum outdoor air

5 Unknown occupied modes

6 Stopped

7 Night cooling

8 Frost protection

The APAR rules have been encoded in a dynamically linked library (DLL) which allows them to

be accessed by existing applications. They may also be integrated into new applications written

for FDD or commissioning. NIST created the APAR DLL to become part of a semi-automated

AHU commissioning tool [10]. It may also be used by other common analysis tools such as

LabView and MATLAB
1
.

The APAR DLL is written in C++, but may also be accessed by programs written in other

computer languages, including C# and Visual Basic. The development environment used was

Microsoft Visual Studio 2008. Detailed instructions on accessing the subroutines in the DLL

from a program written in C++ are provided in this paper. The subroutines can be accessed

using other computer languages or analysis tools by following the general instructions for

accessing DLL’s provided with the other language or analysis tool, and using the information

provided in this guide. This guide documents Version 1.0 of the DLL.

1
 Any mention of commercial products in the APAR DLL or this guide is for information purposes only; it does not

imply recommendation or endorsement by the National Institute of Standards and Technology (NIST).

4

2. Usage of the APAR DLL

Communications with the APAR DLL is performed by calling one of a number of subroutines.

Each subroutine is designed to perform a specific task with a simple, easy to use interface.

The subroutines are divided into four categories: configuration, evaluation, data entry, and

information. The available subroutines in each category are listed in Table 2. The APAR DLL

uses several types of variables, with the usage and ranges as defined in Microsoft Visual Studio

2008 for C++. The usage and ranges are shown in Table 3.

Table 2- Subroutines in the APAR DLL

Category Available Subroutines

Configuration setAHUconfig

getAHUconfig

setAHUparameters

getAHUparameters

setAHUoccupancy

getAHUoccupancy

Evaluation evalData

Data Entry addAHUrecord

ReadFile

Information getCauseDescription

getRuleDescription

Table 3- Value ranges for variable types used in the APAR DLL

Variable Type Description Value Range

char Used for storing a single character or a

small number.

-128 to 127. 1 byte long.

double Used for storing a floating point number. (+/-) 1.7e(+/-) 308. 8 bytes long.

int Used for storing an integer. −2,147,483,648 to 2,147,483,647.

4 bytes long.

struct tm Stores a time value, separated by date and

time components.

This is a struct with several

components. See Table 3 for the

full description.

time_t The number of seconds elapsed since

00:00 hours, Jan 1, 1970 UTC, stored as a

single number. This is usually calculated

by passing a tm value to a standard library

function.

Same as int.

unsigned char Used for storing a single character or a

small number.

0 to 255. 1 byte long.

unsigned int Used for storing an integer. 0 to 4,294,967,295. 4 bytes long.

The struct tm differs from the other variables in that it is a structure, which consists of several

variables associated in one composite type. The members of the struct tm structure are shown in

Table 4.

5

Table 4- The members of the tm structure

Variable Name Description Value Range

tm_sec Seconds after the minute 0-60

tm_min Minutes after the hour 0-59

tm_hour Hours since midnight 0-23

tm_mday Day of the month 1-31

tm_mon Months since January 0-11

tm_year Years since 1900 Same as int

tm_wday Days since Sunday 0-6

tm_yday Days since January 1 0-365

tm_isdst Daylight Saving Time flag 0 or 1

Note that the range of tm_sec is 0 – 60, not 0 – 59. The extra range is to allow for leap seconds.

2.1. Use of the setAHUconfig subroutine

2.1.1. Description

The setAHUconfig subroutine allows the user to set the details of the configuration of the AHU

under test. An array containing configuration options is passed to the subroutine. All parameters

will be set to the values in this array when this subroutine is called. If not modifying all of the

values, it is recommended to initialize the array by calling getAHUconfig first and then

modifying only the values you wish to change.

2.1.2. Declaration

The subroutine is declared as:
__declspec(dllexport) int __cdecl setAHUconfig(unsigned char

*ip);

The declaration in the calling program should be:
extern __declspec(dllimport) int __cdecl setAHUconfig(unsigned

char *ip);

2.1.3. Arguments and Return Value

The input argument is an array of unsigned characters indicating configuration options of the

AHU under test, and is described in Table 5. The array is eight bytes long, and functions like an

array of Boolean values. The AHU options are listed in Table 6. To enable an option, set the

value of its position to 1. To disable an option, set the value to 0.

Table 5- Explanation of arguments to the setAHUconfig subroutine

Argument Description

ip A pointer to an array of unsigned characters eight bytes long. A description of the

values for each position is found in Table 6.

6

Table 6- Options for setAHUconfig

Position Label Description

1 heat Does the AHU have heating capability

2 cooling Does the AHU have cooling capability

3 recovery Does the AHU have heat recovery capability

4 mixing Does the AHU have a mixing box

5 humidity Does the AHU have humidity control

6 nightCooling Is the AHU configured for night cooling

7 frostProtection Is the AHU configured for frost protection

8 econ_Flag Does the AHU have an economizer

The return values for setAHUconfig are described in Table 7. The subroutine will return a value

of 1 if there were no errors, and a value of 0 if there was an error.

Table 7- Description of return values for the setAHUconfig subroutine

2.2. Use of the getAHUconfig subroutine

2.2.1. Description

The getAHUconfig subroutine allows the user to retrieve the details of the configuration of the

AHU under test. An empty array is passed to the subroutine, and filled with the configuration

information on return. The array is identical to that used for setAHUconfig, and is described in

Table 6.

2.2.2. Declaration

The subroutine is declared as:
__declspec(dllexport) int __cdecl getAHUconfig(unsigned char

*ip);

The declaration in the calling program should be:
extern __declspec(dllimport) int __cdecl getAHUconfig(unsigned

char *ip);

2.2.3. Arguments and Return Value

The input argument is an empty array of unsigned characters indicating configuration options of

the AHU under test. See Table 6 for details of the array. The array will be overwritten with the

details of the current configuration of the AHU under test.

Table 8- Explanation of arguments to the getAHUconfig subroutine

Argument Description

ip A pointer to an array of unsigned characters eight bytes long. A description of the

values for each position is found in Table 6. This array will be filled by the

getAHUconfig subroutine.

Return Value Description

1 No errors.

0 An error was encountered.

7

The return values for getAHUconfig are described in Table 9. The subroutine will return a value

of 1 if there were no errors, and a value of 0 if there was an error.

Table 9- Description of return values for the getAHUconfig subroutine

Return Value Description

1 No errors.

0 An error was encountered.

The subroutine will return a value of 1 if there were no errors, and a value of 0 if there was an

error.

2.3. Use of the setAHUparameters subroutine

2.3.1. Description

The setAHUparameters subroutine allows the user to set parameters used by the ruleset when

evaluating data. An array containing parameter values is passed to the subroutine. All

parameters will be set to the values in this array when this subroutine is called. If not modifying

all of the values, it is recommended to initialize the array by calling setAHUparameters first and

then modifying only the values you wish to change.

2.3.2. Declaration

The subroutine is declared as:
__declspec(dllexport) int __cdecl setAHUparameters (double *ip);

The declaration in the calling program should be:
extern __declspec(dllimport) int __cdecl setAHUparameters

(double *ip);

2.3.3. Arguments and Return Value

The input argument is an array of double values indicating parameters to be used by the APAR

ruleset. The input argument is described in Table 10. The array is 37 units long. The

parameters are listed in Table 11. Each position should have its value set before calling the

subroutine. The set of current values can be retrieved by calling the getAHUparameters

subroutine.

Table 10- Explanation of arguments to the setAHUparameters subroutine

Argument Description

ip A pointer to an array of 37 double variables. A description of the values for each

position is found in Table 11.

8

Table 11- Values for setAHUparameters

Position Label Description Default

0 Epsilon_hc Heating coil signal threshold. 0.005

1 Epsilon_cc Cooling coil signal threshold 0.05

2 Epsilon_d Mixing box damper control signal threshold 0.155

3 Epsilon_f Air fraction threshold 0.3

4 Epsilon_h Humidify signal threshold 2.33

5 Qoa_frac_min Minimum outdoor air fraction 0.15

6 Epsilon_t Temperature threshold 1.0

7 DeltMin Minimum change in temperature 5.56

8 DelTsf Change in temperature across supply fan 1.11

9 DelTrf Change in temperature across return fan 1.0

10 Tco Outdoor air changeover temperature 36

11 Uccmin Minimum cooling coil signal 0.0

12 Uccmax Maximum cooling coil signal 1.0

13 Uhcmin Minimum heating coil signal 0.0

14 Uhcmax Maximum heating coil signal 1.0

15 Udmin Minimum mixing box damper 0.0

16 Udmax Maximum mixing box damper 1.0

17 Uhmin Minimum humidity command 0.0

18 Uhmax Maximum humidity command 1.0

19 Urmin Minimum recovery command 0.0

20 Urmax Maximum recovery command 1.0

21 Epsilon_r Recovery signal threshold. 1.0

22 Epsilon_Tmax Maximum allowable temperature difference 100

23 Hrasmin Minimum return air humidity set point 20.0

24 Hrasmax Maximum return air humidity set point 60.0

25 DelccMax
Number of sign changes of the cooling coil control signal

per hour.
1.0

26 DelHcmax
Number of sign changes of the heating coil control signal

per hour.
1.0

27 DelHmax
Number of sign changes of the humidifier control signal

per hour.
1.0

28 TsetMax Maximum air temperature set point 24

29 TsetMin Minimum air temperature set point (for band) 16

30 MTmax Number of mode transitions per hour. 4

31 OccMin Minimum value for Occupancy. 0

32 OccMax Maximum value for Occupancy. 1

33 UodMin Minimum value for outdoor air damper. 0.0

34 UodMax Maximum value for outdoor air damper. 1.0

35 Epsilon_Uod Outdoor air damper threshold. 0.005

36 sensitivity Threshold value modifier. 1.0

The return values for setAHUparameters are described in Table 12. The subroutine will return a

value of 1 if there were no errors, and a value of 0 if there was an error.

9

Table 12- Description of return values for the setAHUparameters subroutine

Return Value Description

1 No errors.

0 An error was encountered.

2.4. Use of the getAHUparameters subroutine

2.4.1. Description

The getAHUparameters subroutine allows the user to retrieve the values of the parameters used

by the APAR ruleset. An empty array is passed to the subroutine, and filled with the parameter

values on return. The array is identical to that used for setAHUparameters, and is described in

Table 11.

2.4.2. Declaration

The subroutine is declared as:
__declspec(dllexport) int __cdecl getAHUparameters (double *ip);

The declaration in the calling program should be:
extern __declspec(dllimport) int __cdecl getAHUparameters

(double *ip);

2.4.3. Arguments and Return Value

The input argument is an empty array of double values. See Table 13 for details of the array.

The array will be overwritten with the details of the current configuration of the AHU under test.

Table 13- Explanation of arguments to the getAHUparameters subroutine

Argument Description

ip A pointer to an array of 37 double variables. A description of the values for each

position is found in Table 11.

The return values for getAHUparameters are described in Table 14. The subroutine will return a

value of 1 if there were no errors, and a value of 0 if there was an error.

Table 14- Description of return values for the getAHUparameters subroutine

Return Value Description

1 No errors.

0 An error was encountered.

2.5. Use of the setAHUoccupancy subroutine

2.5.1. Description

The setAHUoccupancy subroutine allows the user to set occupancy schedule, indicating the time

the building is occupied or unoccupied. A variable indicating the day or days to be set, and

values indicating the start and stop time for occupancy are passed to the subroutine. There is

only one week schedule and changes to the schedule will persist in the current session until they

10

are modified again. The occupancy is stored internally as an array of length 1440 (24 x 60) for

each day, giving one-minute resolution to the occupancy schedule.

2.5.2. Declaration

The subroutine is declared as:
__declspec(dllexport) int __cdecl setAHUoccupancy (unsigned int

day, int hourStart, int minStart, int hourEnd, int minEnd, int

occ);

The declaration in the calling program should be:
extern __declspec(dllimport) int __cdecl setAHUoccupancy

(unsigned int day, int hourStart, int minStart, int hourEnd, int

minEnd, int occ);

2.5.3. Arguments and Return Value

Calling setAHUoccupancy sets a period of time to occupied or unoccupied status. There are six

input arguments to setAHUoccupancy. The inputs are described in Table 15. The first is an

unsigned integer indicating the day which is being set. The values for this are shown in Table

16. The second and third input arguments are integer values indicating the hour and minute

being set. The fourth and fifth input arguments are integer values indicating the hour and minute

being set. The sixth input argument indicates whether the period is set to occupied or

unoccupied status. Calling setAHUoccupancy will overwrite the portion of the array indicated

by the period. The current occupancy schedule can be retrieved by calling the

getAHUoccupancy subroutine.

Table 15- Explanation of arguments to the setAHUoccupancy subroutine

Argument Description

day An unsigned integer value representing the day of week. This should be set to one

of the values in Table 16.

hourStart An integer variable 0 - 23, indicating the first hour being set.

minStart An integer variable 0 - 59, indicating the minute of the first hour being set.

hourEnd An integer variable 0 - 23, indicating the last hour being set.

minEnd An integer variable 0 - 59, indicating the minute of the last hour being set.

occ An integer variable representing the status being set. 1 = occupied, 0 = unoccupied

11

Table 16- Values for the day of week parameter

Value Day of Week

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

8 All weekdays (Monday – Friday)

9 All weekend days (Saturday and Sunday)

10 All days

The return values for setAHUoccupancy are described in Table 17. The subroutine will return a

value of 1 if there were no errors and a value of 0 if there was an error.

Table 17- Description of return values for the setAHUparameters subroutine

Return Value Description

1 No errors.

0 An error was encountered.

2.6. Use of the getAHUoccupancy subroutine

2.6.1. Description

The getAHUoccupancy subroutine allows the user to retrieve the occupancy schedule, which

indicates the time the building is occupied. A variable indicating the day to be read, and an array

which will contain the occupancy values are passed to the subroutine. The schedule for one day

can be retrieved at a time.

2.6.2. Declaration

The subroutine is declared as:
__declspec(dllexport) int __cdecl getAHUoccupancy (unsigned int

day, unsigned char *ip);

The declaration in the calling program should be:
extern __declspec(dllimport) int __cdecl getAHUoccupancy

(unsigned int day, unsigned char *ip);

2.6.3. Arguments and Return Value

There are two input arguments to getAHUoccupancy. The arguments are described in Table 18.

The first is an unsigned integer indicating the day which is being read. The values for this are 1-

7 as shown in Table 16. The second input argument is an array of unsigned char values. The

array is 1440 (24 x 60) members long, with each member representing one minute of the day.

This array will be filled with the occupancy data. The occupancy is represented in each member

as 0 for unoccupied, and 1 for occupied. The first position in the array corresponds to 12:00

AM, the second to 12:01 AM, and so on. The final position in the array corresponds to 11:59

PM.

12

Table 18- Explanation of arguments to the getAHUoccupancy subroutine

Argument Description

day An unsigned integer value representing the day of week. This should be set to a

value of 1 – 7, as described in Table 16.

ip An unsigned character array, length 1440.

The subroutine will return a value of 1 if there were no errors, and a value of 0 if there was an

error. Note that the subroutine can only get the schedule for one day at a time. If a value of 8, 9

or 10 is sent as the day of week parameter an error will be returned.

2.7. Use of the evalData subroutine

2.7.1. Description

Calling the evalData subroutine causes the APAR DLL to evaluate the HVAC data either at a

specific date/time or over a time span. The HVAC data must be passed to the APAR DLL

before the evalData subroutine is called. The results of the evaluation are returned in the rules

and causes arrays.

2.7.2. Declaration

The evalData subroutine is declared with four configurations:

__declspec(dllexport) int __cdecl evalData(time_t time, int

*rules, int *causes);

__declspec(dllexport) int __cdecl evalData(struct tm *intime,

int *rules, int *causes);

__declspec(dllexport) int __cdecl evalData(time_t tstart, time_t

tend, int *rules, int *causes);

__declspec(dllexport) int __cdecl evalData(struct tm *tstart,

struct tm *tend, int *rules, int *causes);

The declaration in the calling program should be:
extern __declspec(dllimport) int __cdecl evalData(time_t time,

int *rules, int *causes);

extern __declspec(dllimport) int __cdecl evalData(struct tm

*intime, int *rules, int *causes);

extern __declspec(dllimport) int __cdecl evalData(time_t tstart,

time_t tend, int *rules, int *causes);

extern __declspec(dllimport) int __cdecl evalData(struct tm

*tstart, struct tm *tend, int *rules, int *causes);

2.7.3. Arguments and Return Value

Each of the configurations has two types of arguments. The first type passes date/time values

into the APAR DLL, while the second is used for return values. The input arguments are

described in Table 19.

13

The first two configurations have one time argument. If called, the APAR DLL will evaluate

the data at the date/time passed in the time argument. The time argument may be passed as a

time_t variable or a pointer to a tm struct. The second two configurations are used to

evaluate a time span, and have two arguments related to time. The tstart argument indicates

the beginning of the time span, and the tend argument indicates the end. Both may be passed

as a time_t variable or a pointer to a tm structure. Note that when setting the year, the value is

set as the number of years since 1900. The year 2012 would be entered as 112.

Table 19- Explanation of arguments to the evalData subroutine

Argument Description

time The time and date information for the evaluation. This variable is of type time_t,

which is explained in Table 3.

intime The time and date information for the evaluation. This variable is of type struct tm,

which is explained in Table 3.

tstart When entering a time span for the evaluation, this is the time and date information

for the start of the span. Depending on the configuration used it may be of type

time_t or struct tm.

tend When entering a time span for the evaluation, this is the time and date information

for the end of the span. Depending on the configuration used it may be of type

time_t or struct tm.

rules A pointer to an array of integers, allocated to a length of at least 30 members. It

will be returned with a list of rules triggered at the time or during the time span of

evaluation.

causes A pointer to an array of integers, allocated to a length of at least 25 members. It

will be returned with information of which causes were triggered at the time or

during the time span of evaluation.

The return values are identical in all four configurations. Two arrays of integer values are passed

to the APAR DLL, which fills them with the results of the analysis. The rules array must be

allocated to a length of 30 members. The contents of the rules array will be filled with a list of

rules that the APAR DLL found were triggered by the evaluated data. The causes array must

be allocated to a length of 25 members. The causes array is filled with a count of the times each

one of the 25 possible causes is signaled by a rule. For example if the data indicated a violation

of Rule 2, then the rules array would hold a value of [2], and the causes array would have

members 2, 3, 4, 18, and 19 (the causes indicated by Rule 2) set to a value of 1. Descriptions of

the rules and causes referenced by the arrays can be retrieved by use of the getCauseDescription

and getRuleDescription subroutines. Note that the number of rules and causes may change in

future versions of this program, and that the current value for each can also be obtained by use of

the getCauseDescription and getRuleDescription subroutines.

The subroutine will return a value of 1 if there were rules returned, a value of 0 if there were no

rules returned, and a value of -1 if there was an error.

14

2.8. Use of the addAHUrecord subroutine

2.8.1. Description

The addAHUrecord subroutine is called to add HVAC data to the APAR DLL for later

evaluation. HVAC data must be passed to the APAR DLL before the evalData subroutine is

called.

2.8.2. Declaration

The addAHUrecord subroutine is declared with 3 configurations:
__declspec(dllexport) int __cdecl addAHUrecord(time_t time,

double *ip);

__declspec(dllexport) int __cdecl addAHUrecord(struct tm *time,

double *ip);

__declspec(dllexport) int __cdecl addAHUrecord(int year, int

month, int day, int hour, int minute, int second, double *ip);

The declaration in the calling program should be:
extern __declspec(dllimport) int __cdecl addAHUrecord(time_t

time, double *ip);

extern __declspec(dllimport) int __cdecl addAHUrecord(struct tm

*time, double *ip);

extern __declspec(dllimport) int __cdecl addAHUrecord(int year,

int month, int day, int hour, int minute, int second, double

*ip);

2.8.3. Arguments and Return Value

Each of the configurations has two types of arguments. The first type passes date/time values

into the APAR DLL, while the second is used to pass the building performance data to be

analyzed.

The first two configurations have one time argument. The time argument may be passed as a

time_t variable or a pointer to a tm struct. The third configuration uses separate arguments

for each component of the date and time- year, month, day, hour, minute, and second. Note that

when setting the year, the value is set as the number of years since 1900. The year 2012 would

be entered as 112.

The ip argument contains a record of HVAC data. The data in a record must be in the order

shown in Table 20.

15

Table 20- Order of input variables for the addAHUrecord subroutine

ID Label Units

1 Occupancy n/a

2 Supply air setpoint C

3 Supply temp C

4 Return temp C

5 Mixed air temp C

6 Outdoor air temp C

7 Cooling coil %

8 Heating coil %

9 Mixing box damper %

10 Recirculation damper- return, recovery command %

11 Humidity control valve for supply air %

12 RH of outside air % RH

13 Mixing temp C

14 Return air setpoint C

15 Outdoor air damper %

16 Return air humidity % RH

The values with units listed as % or % RH have a range of 0.0 – 1.0. Occupancy must be set to 0

or 1. The subroutine will return a value of 1 if there were no errors, and a value of 0 if there was

an error. The return values for setAHUoccupancy are described in Table 21.

Table 21- Description of return values for the addAHUrecord subroutine

Return Value Description

1 No errors.

0 An error was encountered.

2.9. Use of the ReadFile subroutine

2.9.1. Description

The ReadFile subroutine is used to enter an entire file of data into the APAR DLL. The file must

be formatted to have one data record on each line. Lines that start with the hash symbol ‘#’ will

be treated as comments, as will lines with any letters in them. Each line starts with a date and

time, followed by data. The date must be in the format DD/MM/YY. The time must be in the

format hh:mm:ss, where hh is in 24 hour format. The time is followed by the data, in the order

given in Table 20. The date, time, and all other entries must be separated by commas.

2.9.2. Declaration

The ReadFile subroutine is declared with two configurations:
__declspec(dllexport) int __cdecl ReadFile(char *ip);

__declspec(dllexport) int __cdecl ReadFile(FILE *ip);

The declaration in the calling program should be:
extern __declspec(dllimport) int __cdecl ReadFile(char *ip);

16

extern __declspec(dllimport) int __cdecl ReadFile(FILE *ip);

2.9.3. Arguments and Return Value

In the first configuration listed, there is one argument to ReadFile, the name of the input file in a

character string. In the second configuration, the argument is a pointer to a FILE variable. This

handle must already be opened before passing it to ReadFile. The arguments are described in

Table 22.

Table 22- Explanation of arguments to the ReadFile subroutine

Argument Description

char ip The name of the input file in a character string. Example: “AHU data.csv”

FILE *ip A FILE variable for the input file. This should be set using the fopen() function.

See Figure 1 for a full example.

The subroutine will return a value of 1 if there were no errors, and a value of 0 if there was an

error. The return values for ReadFile are described in Table 23.

Table 23- Description of return values for the ReadFile subroutine

Return Value Description

1 No errors.

0 An error was encountered.

2.10. Use of the getCauseDescription subroutine

2.10.1. Description

The getCauseDescription subroutine is used to get a text description of one of the 25 causes.

2.10.2. Declaration

The getCauseDescription subroutine is declared as:
__declspec(dllexport) int __cdecl getCauseDescription(int cause,

char *text);

The declaration in the calling program should be:
extern __declspec(dllimport) int __cdecl getCauseDescription(int

cause, char *text);

2.10.3. Arguments and Return Value

There are two arguments to getCauseDescription. The first argument is an integer which must be

set to the number of the cause being referenced. The second argument is a character string which

will contain the text of the description. If the first argument is set to a value of 0, the text

variable will be returned with the number of cause descriptions available, as a text string, i.e.

“25” not the value 25. The arguments to getCauseDescription are described in Table 24.

17

Table 24- Explanation of arguments to the getCauseDescription subroutine

Argument Description

cause The index of the cause being requested. Set to 0 to retrieve the number of cause

descriptions available.

text A character string which will be filled with the text describing the cause requested.

See Figure 1 for a full example.

The subroutine will return a value of 1 if there were no errors, and a value of 0 if there was an

error. The return values for setAHUoccupancy are described in Table 25.

Table 25- Description of return values for the getCauseDescription subroutine

Return Value Description

1 No errors.

0 An error was encountered.

2.11. Use of the getRuleDescription subroutine

2.11.1. Description

The getRuleDescription subroutine is used to get a text description of one of the 28 possible

rules.

2.11.2. Declaration

The getRuleDescription subroutine is declared as:
__declspec(dllexport) int __cdecl getRuleDescription (int rule,

char *text);

The declaration in the calling program should be:
extern __declspec(dllimport) int __cdecl getRuleDescription (int

rule, char *text);

2.11.3. Arguments and Return Value

There are two arguments to getRuleDescription. The first argument is an integer which must be

set to the number of the rule being referenced. The second argument is a character string which

will contain the text of the description. If the first argument is set to a value of 0, the text

variable will be returned with the number of rule descriptions available, as a text string, i.e. “28”

not the value 28. The arguments to getRuleDescription are described in Table 26.

Table 26- Explanation of arguments to the getRuleDescription subroutine

Argument Description

rule The index of the rule being requested. Set to 0 to retrieve the number of rule

descriptions available.

text A character string which will be filled with the text describing the rule requested.

See Figure 1 for a full example.

The subroutine will return a value of 1 if there were no errors, and a value of 0 if there were an

error. The return values for setAHUoccupancy are described in Table 27.

18

Table 27- Description of return values for the getRuleDescription subroutine

Return Value Description

1 No errors.

0 An error was encountered.

19

3. Using the APAR DLL- Code Samples

The following code snippets demonstrate how to use the APAR DLL by telling it to analyze an

entire data file. Not every function is shown, but the techniques needed for each function are

demonstrated.

3.1. Basic Use

This sample demonstrates the methods needed for a basic implementation of the code.

struct tm tms;

int rules[61]; // NOTE- length + 1

int causes[26]; // NOTE- length + 1

int i; // NOTE- check i for errors after each function call (not shown)

char t1[360];

int nRule;

double params[37];

unsigned char ahuconfig[] = {1,1,1,1,1,1,1};

FILE *ip;

memset(&tms,0,sizeof(struct tm));

// set tms to first line time in file- 7:00 AM on August 16, 2010

tms.tm_hour = 7;

tms.tm_min = 0;

tms.tm_sec = 0;

tms.tm_year = 110;

tms.tm_mon = 8;

tms.tm_mday = 16;

ttstart = mktime(&tms);

i = setAHUconfig(ahuconfig); // Set the AHU config

i = getAHUparameters(params); // Retrieve parameter array

params[5] = 0.15; // set Qoa_frac_min to 15%

 // Note that index is 5, not 6, due to 0-based arrays

i = setAHUparameters(params); // Set parameter array after modification

i = ReadFile("APARWeek34.csv"); // Read in an entire data file

ip = fopen(“APARWeek35.csv”,”r”);

i = ReadFile(ip); // Read in an entire data file using file pointer

i = getCauseDescription(0,t1); // Retrieve count of available causes

printf("There are %d causes\n",i);

nRule = getRuleDescription(0,t1); // Retrieve count of available rules

printf("There are %d rules\n",nRule);

i = evalData(tms,rules,causes); // evaluate stored data

// Print index for each fault found

for(i=0;(rules[i] > 0)&&(i < nRule);i++){

 printf(“APAR found fault %d\n”,rules[i]);

 getRuleDescription(i,t1);

 printf(“Rule description: %s\n”,t1);

}

Figure 1- Sample Code for Multiple Subroutines

20

3.2. Using the addAHUrecord subroutine

The following code snippet demonstrates how to send a single set of data to the APAR DLL.

The subroutine SendDataToAPAR would be declared as part of a program or class. Note that

the timestamp and data are passed into the example subroutine.

int SendDataToAPAR(struct tm tms, double *myData)

{

 int i;

 i = addAHUrecord(tms,myData); // Pass the data to the DLL

 // NOTE- check i for errors after each function call (not shown)

 return(i);

}

Figure 2- Sample Code for the addAHUrecord Subroutine

3.3. Using the getAHUoccupancy and setAHUoccupancy subroutines

The following code snippet demonstrates how to modify the occupancy schedule used by the

APAR DLL. The subroutine setAHUoccupancy would be declared as part of a program or class.

Note that the timestamp and data are passed into the example subroutine.

// variable to hold occupancy data

unsigned char sched[1440];

// not shown: check return value for errors after each function call

//-----

// set occupied on Thursday from 6 – 7 PM.

i = setAHUoccupancy(5,18,0,19,0,1); // see Section 2.5 for parameter info

//-----

// set unoccupied on Friday from 3:15 (15:15) to 6:45 PM (18:45).

i = setAHUoccupancy(6,15,15,18,45,0);

//-----

// set unoccupied on Saturday and Sunday from 10 AM to 1:30 PM.

i = setAHUoccupancy(9,10,0,13,30,0);

//-----

// set unoccupied on all of Monday

i = setAHUoccupancy(2,0,0,23,59,0);

//-----

// get the occupancy schedule for Thursday

i = getAHUoccupancy(5,sched);

Figure 3- Sample Code for Occupancy Subroutines

21

4. Summary

The use of the NIST APAR DLL has been documented in order to enable the adaptation of this

software by a wide range of users. It is hoped that improved access to these rules will encourage

the use of fault detection and diagnostics by a wider audience. When combined with the NIST

BACnet DLL software, users can create powerful tools for detecting faults and analyzing

building performance.

5. References

[1] House, J.M., Vaezi-Nejad, H., and Whitcomb, J.M., An Expert Rule Set for Fault Detection

in Air-Handling Units, ASHRAE Transactions, Vol. 107, Pt. 1, 2001.

[2] Milesi-Ferretti, N.S., Schein, J, Park, C.D. , Galler, M.A., Bushby, S.T., House, J, Results

from Simulation and Laboratory Testing of Air Handling Unit and Variable Air Volume Box

Diagnostic Tools, NISTIR 6964, January 2003.

[3] Schein, J, Bushby, S.T., Milesi-Ferretti, N.S., House, J, Results from Laboratory Testing of

Embedded Air Handling Unit and Variable Air Volume Box Fault Detection Tools, NISTIR

7036, August 2003.

[4] Schein, J, Bushby, S.T., House, J, Results from Field Testing of Air Handling Unit and

Variable Air Volume Box Fault Detection Tools, NISTIR 6994, April 2003.

[5] Schein, J, Bushby, Automated Fault Detection and Diagnostics for Air Handling Units and

VAV Boxes, ASHRAE Journal Vol. 47 No. 7, July 2005

[6] Schein, J, Bushby, Milesi-Ferretti, N.S., A Rule-Based Fault Detection Method for Air

Handling Units, Energy & Buildings Vol. 38, Issue 12, December 2006, pp. 1485 – 1492, 2006

[7] Schein, J., Results from Field Testing of Embedded Air Handling Unit and Variable Air

Volume Box Fault Detection Tools, NISTIR 7365, 2006

[8] Galler, M.A., Using the BACnet Communications DLL v1.0, NIST TN 1607, 2008

[9] Galler, M.A., Using the BACnet Data Source v1.7, NISTIR 7825, 2011

[10] CITE-AHU, Version 2.0, NIST, 2013.

